功率MOSFET的结构工作原理及应用
- 型号:LDX-K3050
- 输出电压:0-30V 输出电流:0-50A
- 来源:机关政府医院
- 发布时间:2024-10-25 08:16:05
- (场效应管)”是英文MetalOxide Semicoductor Field Effect T
(场效应管)”是英文MetalOxide Semicoductor Field Effect Transistor的缩写,译成中文是“金属氧化物半导体场效应管”。它是由金属、氧化物(SiO2或SiN)及半导体三种材料制造成的器件。所谓(场效应管)(Power MOSFET(场效应管))是指它能输出较大的工作电流(几安到几十安),用于功率输出级的器件。
图1是典型平面N沟道增强型MOSFET(场效应管) 的剖面图。它用一块P型硅半导体材料作衬底(图la),在其面上扩散了两个N型区(图lb),再在上面覆盖一层二氧化硅(SiQ2)绝缘层(图lc),最 后在N区上方用腐蚀的方法做成两个孔,用金属化的方法分别在绝缘层上及两个孔内做成三个电极:G(栅极)、S(源极)及D(漏极),如图1d所示。
从图1中能够准确的看出栅极G与漏极D及源极S是绝缘的,D与S之间有两个PN结。正常的情况下,衬底与源极在内部连接在一起。
图1是N沟道增强型MOSFET(场效应管)的基本结构图。为了改善某些参数的特性,如提升工作电流、提升工作电压、降低导通电阻、提高开关特性等有 不同的结构及工艺,构成所谓VMOS、DMOS、TMOS等结构。图2是一种N沟道增强型功率MOSFET(场效应管)的结构图。虽然有不同的结构,但其 工作原理是相同的,这里就不一一介绍了。
要使增强型N沟道MOSFET(场效应管)工作,要在G、S之间加正电压VGS及在D、S之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。如图3所示(上面)。
若先不接VGS(即VGS=0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,因此漏源之间不能导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷(如图3)。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极性相反,所以称为“反型层”,这反型层有可能将漏与源的两N型区连接起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它将被P型衬底中的空穴中和,因此在这样的一种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压叫做开启电压(或称阈值电压、门限电压),用符号VT表示(一般规定在ID=10uA时的VGS作为VT)。当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线所示。此曲线称为转换特性。因此在一些范围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。
由于这种结构在VGS=0时,ID=0,称这种MOSFET(场效应管)为增强型。另一类MOSFET(场效应管),在VGS=0时也有一定的ID(称为IDSS),这种MOSFET(场效应管)称为耗尽型。它的结构如图5所示,它的转移特性如图6所示。VP为夹断电压(ID=0)。
耗尽型与增强型主要区别是在制造SiO2绝缘层中有大量的正离子,使在P型衬底的界面上感应出较多的负电荷,即在两个N型区中间的P型硅内形成一N型硅薄层而形成一导电沟道,所以在VGS=0时,有VDS作用时也有一定的ID(IDSS);当VGS有电压时(可以是正电压或负电压),改变感应的负电荷数量,从而改变ID的大小。VP为ID=0时的-VGS,称为夹断电压。
除了上述采用P型硅作衬底形成N型导电沟道的N沟道MOSFET(场效应管)外,也可用N型硅作衬底形成P型导电沟道的P沟道MOSFET(场效应管)。这样,MOSFET(场效应管)的分类如图7所示。
为防止MOSFET(场效应管)接电感负载时,在截止瞬间产生感应电压与电源电压之和击穿MOSFET(场效应管),一般功率MOSFET(场效应管)在漏极与源极之间内接一个迅速恢复二极管,如图8所示。
MOSFET(场效应管)是电压控制型器件(双极型是电流控制型器件),因此在驱动大电流时无需推动级,电路较简单;
工作频率范围宽,开关速度高(开关时间为几十纳秒到几百纳秒),开关损耗小;
有较优良的线性区,并且MOSFET(场效应管)的输入电容比双极型的输入电容小得多,所以它的交流输入阻抗极高;噪声也小,最合适制作Hi-Fi音响;
功率MOSFET(场效应管)可以多个并联使用,增加输出电流而无需均流电阻。
电池反接保护电路如图9所示。一般防止电池接反损坏电路采取串接二极管的方法,在电池接反时,PN结反接无电压降,但在正常工 作时有0.6~0.7V的管压降。采用导通电阻低的增强型N沟道MOSFET(场效应管)具有极小的管压降(RDS(ON)×ID),如Si9410DY的RDS(ON)约为0.04,则在lA时约为0.04V。这时要注意在电池正确安装时,ID并非完全通过管内的二极管,而是在VGS5V时,N导电沟道畅通(它相当于一个极小的电阻)而大部分电流是从S流向D的(ID为负)。而当电池装反时,MOSFET(场效应管)不通,电路得以保护。
一种简单的触摸调光电路如图10。当手指触摸上触头时,电容经手指电阻及100k充电,VGS渐增大,灯渐亮;当触摸下触头时,电容经100k及手指电阻放电,灯渐暗到灭。
由R1、R2建立VGS静态工作点(此时有一定的ID流过)。当音频信号经过C1耦合到栅极,使产生-△VGS,则产生较大的△ID,经输出变压器阻抗匹配,使4~8喇叭输出较大的声功率。图ll中Dw为9V稳压二极管,是保护G、S极以免输入过高电压而击穿。从图中也能够准确的看出,偏置电阻的数值较大,因为栅极输入阻抗极高,并且无栅流。
大环境的不景气是就业环境恶化的元凶,但是也让我们不禁追问半导体公司的大学计划对于学子们的真正意义。厂商们的大学计划都在做些什么?那么多的联合实验室有得到充分的利用吗?大学计划的直接体验者--老师和学生们是否真正从中受益.【专栏作者:高扬】
全球经济不景气的大环境下一些本土IC公司的创新能力、管理能力、抗风险能力、盈利能力,甚至公司创立的动机都受到一些质疑。一方面官方的消息总是告诉我们中国的半导体产业得到了长足的进步;而街巷小道中又不绝流传多少本土IC公司倒闭,多少公司靠欺骗,就没有核心竞争力.真相只有一个,也许会随《本土IC公司调查笔记》慢慢开启【专栏作者:岳浩】
在这个系列里,每个故事都会向你展示一个普通工程师的经历,他们的青葱岁月和技术年华,和我们每个人的的生活都有交集。对自己、对公司、对产业、对现在、对未来、对技术、对市场、对产品、对管理的看法,以及他们的经历或正在经历的事情,我们大家可以看到自己的影子,也看清未来的样子【专栏作者:任亚运】
对于从事电子分销行业的同仁们来说这是一个最坏的年代,也是一个最好的年代,我们即面临国际分销巨头在管理、资金、货源等方面对我们造成的冲击,又迎来本土集成电路的崛起,个性化服务盛行的机遇,通过这一个系列,我想以“第一现场”的经历带大家一起了解国内集成电路分销的那些年、那些事,以及哪些感慨..【专栏作者:张立恒】
LATEST NEWS
新闻中心
- 户外LED显示屏如何接线三分钟了解本篇内容[行业知识]2024-11-28
- 野外太阳能灯怎么样处理CE认证什么是CE认证2024-11-28
- 技术大神手把手教你DIY实验电源:含全部PCB及思路2024-11-28
- 万用表怎样测三相漏电2024-11-27
- 教你找到停车“偷电”的真凶自己动手几分钟搞定有手就行2024-11-27
- 开关电源的拓扑结构电路图2024-11-27